首页 > 健康养生 > 关节假体周围感染
2024
04-15

关节假体周围感染

Periprosthetic Joint Infection

关节置换术相关感染也称为假体周围感染(PJI),这是一种罕见疾病,在临床上有别于自体骨感染或关节感染。PJI一方面涉及微生物之间的相互作用,另一方面涉及假体与宿主免疫系统之间的相互作用。少量微生物即可引起PJI。细菌(有少数病例是真菌)可附着在假体表面并形成生物膜。许多抗微生物剂和宿主免疫系统往往对生物膜没有作用(图1A)。致病微生物通常是假体植入时种植的皮肤微生物群,但也可以是假体植入后血行播散或通过受损局部组织播散的微生物。

图1. 关节假体周围感染(PJI)和常见关节置换术

图A显示膝关节置换术后感染患者假体表面的生物膜。图B显示常见关节置换术。图C显示膝关节PJI外观,表现为肿胀、发红、底部开放的伤口伴排液及窦道。并非每位患者都会出现上述所有临床表现。

临床表现


最常见症状是关节疼痛。某些病例可能有感染的局部体征(如关节红肿发热)。患者通常并无发热。慢性感染患者可能只有疼痛,有时伴有假体松动和窦道(图1C)。形成窦道对于PJI具有诊断意义,但许多病例并无窦道。某些病例可能难以鉴别PJI和关节置换术失败的非感染性原因,而鉴别两者可指导手术和药物治疗。

微生物学特征


有许多细菌(有少数病例是真菌)可导致PJI。在一项纳入1651例患者(2067例髋关节或膝关节PJI)的研究中,最常见的微生物是凝固酶阴性葡萄球菌(尤其是表皮葡萄球菌),其次是金黄色葡萄球菌、链球菌、肠球菌、丙酸杆菌(cutibacterium)和肠杆菌(表1) 1。该研究在一家三级转诊中心进行,结果可能与其他机构有所不同。70%的PJI是由单一微生物引起,25%是由多种微生物引起。培养结果阴性率因研究而异,这反映出诊断策略、抗生素预处理和培养结果阳性定义的差异,报告的培养结果阴性率高达45%。痤疮丙酸杆菌(cutibacterium acnes)导致了约44%的肩关节PJI病例2。

表1. 髋关节和膝关节假体周围感染(PJI)检出的微生物*

* 数据来自一家三级转诊中心;70%的PJI为单一微生物引起,25%为多种微生物引起1。病原体分布可能因机构而异。

流行病学


在美国,最常实施的关节置换术是膝关节置换术,其次是髋关节置换术,较少实施的是肩、肘、腕、踝以及掌指关节和指间关节置换术(图1B)。美国的全髋关节和全膝关节置换术数量日益增加(预计将继续增加)3,4,髋关节和膝关节PJI数量也同步增加(预计也将继续增加)(图2)。

图2. 美国髋关节和膝关节PJI数量的变化

数据来自Kurtz等(1990~2001年)3和Premkumar等(2002~2017年)4的论文,包括2018—2030年的预测数据4。

2017年,美国髋关节和膝关节PJI的发病率分别为2.1%和2.3% 4,韩国发病率相似5。然而,由于人群、定义和随访时间的差异,不同研究报告的发病率有所不同6。例如,在美国一家机构对36,494例初次全髋关节置换术进行的研究中,PJI发病率为0.4% 7。

虽然PJI风险在术后早期最高,但只要关节存在,该风险就持续存在,且有相当一部分感染在1年后表现出症状。在加拿大一项基于人群的研究和新西兰一项登记系统研究中,膝关节PJI发病率分别从第1年时的0.5%和0.8%增加至第15年时的1.7%和2.0% 8,9。在加拿大另一项基于人群的研究中,第1年时髋关节PJI发病率为0.5%,第15年时为1.4% 10。虽然早期研究报告聚乙烯磨损是全膝关节置换术失败的主要原因,但材料的改进已经使PJI成为主要原因8,11。

经济因素


PJI治疗昂贵、耗时且耗费资源。髋款姐和膝关节PJI的住院费用分别约为每次89,000美元和116,000美元12,13。根据住院数据,在全髋关节置换术后5年内,因PJI产生的翻修费用是因其他原因产生的翻修费用的5倍以上14。在假体终身使用期间,髋关节PJI产生的最终费用约为39.1万美元15。截至2030年,美国因髋关节和膝关节PJI产生的住院费用估计将达到每年18.5亿美元4。

手术策略影响费用。髋关节或膝关节PJI二期翻修术(取出假体、全身应用抗生素、之后植入新假体)费用是清创保留假体联合抗生素(以下简称DAIR)费用的2~4倍16,而DAIR又是无感染情况下更换部分假体费用的约2倍17。美国联邦医疗保险(Medicare)对PJI治疗费用报销不足,有必要基于其高昂费用更新报销政策,以确保PJI患者持续获得治疗和高质量护理,有其是因为报销缺口可能会降低医疗资源不足人群的医疗可及性。

危险因素


目前已确定了PJI的多种危险因素(表2),其中只有部分因素(包括贫血18、注射毒品19 、营养不良18,20、肥胖7,18,20、血糖控制不佳[合并糖尿病]和吸烟118,20)有可能改变9,10,18,20。许多外科医师试图在关节置换术前解决这些因素。有一个预测髋关节PJI患者死亡风险的在线工具(https//erikbulow.shinyapps.io/prediction_model/)21。

表2. PJI的危险因素

* 可在术前改善血糖控制。 

如果其他部位有活动性感染(如肺炎),则应推迟关节置换术。全膝关节或全髋关节置换术前3个月内,患病关节曾接受关节内注射(如糖皮质激素、透明质酸或麻醉药)是发生PJI的危险因素22,23。接受过多次关节置换术且一个关节发生PJI的患者,其他关节发生同时或异时(可能在数年后)感染的风险高达20%。在一项研究中,女性和耐甲氧西林金黄色葡萄球菌(MRSA)PJI患者比男性和无MRSA的患者更有可能在其他关节发生异时PJI;类风湿关节炎患者和菌血症患者其他关节(同时或异时)感染的可能性也增加 24。

即使根据教育水平和家庭收入进行校正后,主要付款方是美国联邦医疗保险(Medicaid)的患者发生PJI的风险仍较高25。据报道,较贫穷患者以及Medicare或Medicaid保险患者在膝关节PJI后接受膝上截肢,以及在髋关节PJI后接受Girdlestone切除术的发生率较高26,27。

在一项研究中,针对社会经济因素进行校正后,PJI患者一级亲属以及一级加二级亲属发生PJI的风险较高25。可能的遗传易感性有待进一步研究。

手术时间延长会增加PJI风险。在一项研究中,与手术时间不到60分钟相比,手术时间超过90分钟与PJI风险增加1.6倍相关28。

预防


除减少可改变的危险因素外,还有几种策略有助于预防PJI。在手术量较少的医院由手术量较少的外科医师实施关节置换术时,发生并发症的可能性较大29,因此应考虑在专科中心进行治疗。应考虑术前筛查金黄色葡萄球菌携带情况,并对携带者进行去定植,或进行普遍去定植。在接受择期全膝关节置换术或全髋关节置换术的患者中,比较手术部位感染和PJI的荟萃分析表明,未进行去定植的情况下,任何感染的风险均增加30,31,金黄色葡萄球菌30或MRSA31 感染的风险也增加,而在普遍去定植与基于筛查结果的去定植之间,风险差异很小31。接受择期手术的患者至少应在术前一晚用氯己定布或肥皂和水清洗皮肤32。

头孢唑林应在手术切开前60分钟内给药,并在止血带充气前输入。与头孢唑林相比,替代药物(如万古霉素和克林霉素)与较高的髋关节、膝关节和肩关节PJI风险相关2,33-36。虽然一些医师建议对过敏进行评估(例如皮试),但报告青霉素过敏的患者大多适合接受头孢唑林治疗(在无过敏反应或Stevens-Johnson综合征病史的情况下) 37,38。对于MRSA定植的患者,一些临床医师建议在头孢唑林基础上加用万古霉素。比较头孢唑林+万古霉素与头孢唑林单药预防的一项随机、对照试验正在进行中(在澳大利亚新西兰临床试验注册系统注册号为ACTRN12618000642280)。虽然在历史上,预防用药的持续时间各异,但目前的建议是在切口关闭时停止预防用药32,39。对接受术前单剂预防的初次全膝关节或全髋关节置换术患者与接受24小时预防的患者数据进行比较的回顾性分析表明,PJI发生率无显著差异40。在全膝关节置换术患者中比较1剂和3剂头孢唑林的随机临床试验正在进行中(在ClinicalTrials.gov注册号为NCT03283878)。高危患者可能需要长期预防,为探索这一问题,一项随机试验正在高危患者人群中比较全髋关节置换术或全膝关节置换术后口服抗生素预防7天与标准治疗对PJI发生率的影响(NCT04297592)。

手术时需要对手术部位进行适当准备。抗微生物药物浸渍的切口敷料(由透明薄膜构成的手术敷料,旨在预防手术部位感染)无效41。应限制手术室通行20。应避免积极抗凝20。氨甲环酸可降低髋关节和膝关节PJI发生率42,43。

可考虑将抗菌药物局部递送至伤口部位,但需谨慎。美国骨科医师学会(American Academy of Orthopaedic Surgeons)建议在全髋关节置换术和全膝关节置换术中应用稀释聚维酮碘灌洗,以降低感染风险18。研究表明,与各对照组相比,稀释聚维酮碘灌洗对初次手术或翻修手术患者无效应,但对盐水对照组研究进行的亚组分析提示,稀释聚维酮碘灌洗在预防PJI方面有效44。在另一项研究中,在初次全膝关节或全髋关节置换术前接受葡萄糖酸氯己定灌洗的患者和接受稀释聚维酮碘灌洗的患者之间,PJI发生率无显著差异45。虽然一些外科医师应用万古霉素粉剂46,但其益处尚未得到证实47,而且有潜在危害(例如术后伤口无菌性并发症) 47。对万古霉素粉剂开展的一项多中心、随机、对照试验正在进行中46。

诊断


PJI的定义不断变化,从2012年美国感染病学会(Infectious Diseases Society)指南48和肌肉骨骼感染学会(Musculoskeletal Infection Society)标准(2011)49 到《国际骨科感染共识》(International Consensus on Orthopedic Infections)定义(2018)50、Parvizi等(2018)51提出的定义和欧洲骨关节感染学会(European Bone and Joint Infection Society)定义(2021)52。后两种定义的比较见表3和补充附录表S1,补充附录与本文全文可在NEJM.org获取。了解这些不断变化的定义可能是诊断PJI的起点。

表3. 髋关节或膝关节PJI的诊断标准*

* “单一”表示只需符合列出的一项标准即可确诊。CFU表示菌落形成单位,EBJIS表示欧洲骨关节感染学会。

† 在术后早期或存在其他可能的炎症原因(包括金属病、关节积血、晶体关节病、活动性炎症性关节疾病[如类风湿关节炎]或假体周围骨折)时,应谨慎解读。这些指标仅在液体澄清、未不进行灌洗时有效。容积应大于250 μL(理想情况下为1 mL),用EDTA管收集,并在可能的情况下,使用自动化技术在1小时内进行分析。对于粘性样本,透明质酸酶预处理提高了自动化或光学技术的准确性。对血液样本使用以下公式:校正后的滑膜白细胞计数=观察到的滑膜白细胞计数-(血液中的白细胞计数÷血液中的红细胞计数×滑液中的红细胞计数)。

‡ 这一标准对于潜在的局部组织不良反应、血肿、急性炎性关节炎或晶体关节病是无效的。

§ Bémer等提出10个高倍视野中23个中性粒细胞的阈值53。

准确的诊断很重要,因为PJI的治疗与非感染性关节衰竭的治疗不同,如果存在PJI,确定微生物病因有助于手术治疗和抗菌药物的选择。急性感染或引流窦慢性感染的诊断很简单。在这些情况下,检测可能仅限于微生物学诊断所需的检测。单是局部关节痛就可能对诊断提出更多挑战,需要进一步的检查。

包括C反应蛋白测定在内的血液检查,以及诊断意义较小的白介素-6、红细胞沉降率或d-二聚体评估可能有帮助18,51,52,但这些检查结果不能单独用于诊断,可能相互重复,也不能提供微生物学信息。当诊断不明确时,表3所示的诊断检查和相关评分系统可能有帮助。血培养约25%的病例呈阳性,最常见于急性PJI病例,但分离出的微生物并不总是与关节标本中发现的微生物相关54。

关节穿刺是诊断PJI的主要方法。吸取时避开上面的蜂窝织炎。对于膝关节以外的其他关节,尤其是髋关节,可能需要影像学(最好是超声)引导吸取。对于典型微生物,吸取量至少为3.5 mL 55。应提交滑液进行白细胞计数和中性粒细胞百分比评估以及培养。实验室报告的正常数值和自身关节的化脓性关节炎数值不适用于白细胞计数和中性粒细胞百分比。我们使用了PJI特异性的解释标准,标准因使用的定义以及关节置换术至发生感染的间隔时间而异(表3)18,51,52。我们可以在滑液中检测α-防御素(Synovasure,Zimmer Biomet)、C反应蛋白、白细胞酯酶和钙卫蛋白56,与白细胞计数和中性粒细胞百分比相比,每种方法提供的诊断信息有一定冗余。这四种检查通常用于疑难病例57,58。滑液应进行好氧和厌氧培养,最好是在血培养瓶中,厌氧培养14天。如果检测到临床意义不确定的微生物,应考虑重复抽吸,或者在术中培养的背景下解读结果(表3)。不建议进行革兰染色。如果未发现微生物,PJI诊断仍未得到证实,并且未计划进行手术,则可考虑关节镜检查和活检。

X线平片的敏感度和特异度较低;假体周围透亮线、骨溶解、假体移位或这些结果的组合可能在感染或无菌性松动时出现。白细胞闪烁显像(表S1)可能提供潜在PJI的证据52。如果PJI的诊断不明确,尤其是在未计划进行翻修手术的情况下,可考虑计算机断层扫描(CT)或18F-氟脱氧葡萄糖或18F-氟化钠正电子发射断层扫描-CT 18。磁共振成像对与非铁磁(如钛和钽)植入物相关的软组织异常提供了良好的分辨率。然而,尚无影像学检查可用于确定致病病原体。

在手术时,应收集组织进行组织病理学评估(除非已经确定PJI的诊断),并收集多个组织标本进行有氧和厌氧培养(考虑到单一培养的敏感性较差,以及为了区分污染物和病原体)。不建议进行拭子培养、窦道培养和组织革兰染色。当抗生素在培养前至少停用2周时,培养阳性率可能较高18。然而,预防性的术前抗生素治疗不会降低培养阳性率,因此应该使用59。通过对急性炎症进行冰冻切片分析,可以进行术中评估60。应取样多个部位和组织类型进行培养61。即使术前滑液的培养结果为阳性,也应收集组织培养物(例如,以排除基础混合微生物PJI的可能性)62。理想情况下,假体周围组织样本应在血培养瓶中培养63,厌氧培养物应孵育14天。使用标准平板和肉汤培养时,应培养4份组织标本;使用血培养瓶时,应培养3份组织标本64。除非检测出金黄色葡萄球菌等明确的病原体,否则单一阳性培养物可能难以解读。在两个或多个标本中检出相同的微生物可确立微生物学诊断。不常规推荐真菌和分枝杆菌培养,但在特殊情况下可考虑65。

如果去除植入物组件,对植入物表面进行检测生物膜的培养可用于微生物学诊断。一种技术涉及涡旋和超声处理。植入物的组件被放置在一个无菌的罐子里。加入溶液,并在超声水浴中对容器进行涡旋和超声处理。所得的超声处理液进行需氧和厌氧半定量培养66。必须使用适当的临界值,因为少量的生物体可能代表污染物。理想的培养敏感度是通过组织培养和超声-液体培养相结合实现的67。目前正在评估新的基于血液的宿主生物标志物,如presepsin 68。用于微生物检测和特征确定的新诊断方法包括对滑液69、超声处理液或假体周围组织进行的16S核糖体RNA基因聚合酶链反应(PCR)和Sanger测序或二代测序(即靶向宏基因组测序[TMS])或两者同时进行,以及霰弹枪宏基因组测序(SMS);TMS和SMS对超声裂解液的评估效果相似70。SMS不仅可以对超声处理液71进行,还可以对滑液72、假体周围组织73或血浆74进行。在一项对滑液或拭子进行的商业TMS检测法(MicroGenDx)研究中,该检测法的敏感度和特异度均未优于培养75。在另一项研究中,对滑液进行的基于TMS的方法显示出良好的特异度,敏感度与培养相似;TMS联合培养的敏感度高于单纯培养76。滑液的多重PCR检测试剂盒(BioFire)已获得美国食品药品监督管理局批准。但试剂盒缺乏一些重要的PJI病原体的,如表皮葡萄球菌77。在先进分子诊断学的临床价值通过预先诊断检测得到证明之前,这些检测应用于培养结果为阴性的疑似PJI患者76,77。

治疗


PJI的治疗复杂且昂贵,如果可能,应在由专门协作团队(即在协调诊所工作的骨科医师和感染科医师)进行大量人工关节手术的专科中心提供治疗,这与癌症中心提供的治疗模式相似。治疗的目的是确保关节的功能和无痛,最理想的是治愈感染。在大多数情况下,仅使用抗生素治疗而不进行手术干预会失败;细致的手术清创很重要。

对于髋关节、膝关节的急性PJI,除非存在窦道、假体松动或伤口无法闭合,可采用DAIR 78。我们需要随机对照试验来确定晚期急性PJI的适当手术策略79,尤其是晚期急性葡萄球菌性PJI 80。慢性感染需要切除性关节成形术,可以是一期翻修(在一次手术中取出感染的假体并重新植入新假体),也可以是二期翻修。二期翻修中使用的抗生素洗脱聚甲基丙烯酸甲酯关节间隔垫片(spacer)有助于在无假体期间保持功能81。虽然二期翻修在历史上一直是美国慢性PJI的主要治疗方法,但越来越多的证据提示,在经过仔细选择的患者中,一期翻修可能是可以接受的82-86。一项比较一期和二期髋关节和膝关节翻修术的随机试验正在进行中(NCT02734134)。

如果患者不适合手术,可尝试使用抗菌药物抑制。这种方法不太可能治愈感染,因此抗生素治疗通常是终身的。如果术后预期关节功能无法接受,或者虽然进行了手术,但感染仍持续,则有时可考虑关节切除成形术并建立假关节(Girdlestone手术),或者关节融合术或截肢术(作为治疗膝关节感染的最后手段)。

根据抗菌药物敏感性试验结果进行长期抗微生物治疗可用于治疗PJI。首选抗生素、给药途径和治疗持续时间尚未完全确定。一项随机、对照试验在接受DAIR或一期或二期翻修治疗的PJI患者中比较了6周和12周抗生素治疗,结果表明6周组18%的患者和12周组9%的患者在2年内发生了持续性感染,未显示非劣效性87。然而,正如作者所指出的,“6周组的大多数治疗失败发生在接受清创术并保留植入物的患者中。”这些结果与其他研究者的结果不同88,89。抗生素仅静脉给药9天(中位数)87。虽然早期过渡到口服抗生素治疗的情况在美国并不常见,但OVIVA(骨和关节感染口服与静脉注射抗生素治疗的比较,Ooral versus Intravenous Antibiotics for Bone and Joint Infection)试验表明,对于复杂的骨科感染,口服抗生素治疗不劣于静脉给药治疗90。至少在美国,许多骨科医师和感染科医师建议接受DAIR治疗的患者接受数月抗生素治疗。Shah等证明,对于接受DAIR治疗的膝关节PJI,与单独静脉给予抗生素治疗相比,延长口服抗生素治疗与较高的无感染生存概率相关91。在对葡萄球菌性PJI实施的DAIR中,利福平常与另一种活性抗生素联用,但支持这一做法的证据相互矛盾79。目前正在评估其他利福霉素(例如利福布汀)作为利福平的替代药物。PJI的抗微生物疗法正在开发,关于治疗策略的详细讨论超出了本文的范围。

由于PJI的社会和情绪影响(见下文),应考虑让心理学家参与PJI患者的治疗92。

结局


与非感染性关节成形术相比,PJI与住院时间延长、不太理想的成功率、高致残率、生活质量下降和高死亡率相关。髋关节或膝关节PJI患者的平均住院时间比初次关节置换术患者长(全髋关节置换术,7.6天vs. 3.3天;全膝关节置换术,5.3天vs. 3.0天)12,13。一篇包含29项研究(2000~2020年期间报告)的综述表明,一期和二期全膝关节置换术后的平均感染根除率分别为87%和83% 84。然而,二期翻修的总体成功率低于50% 93,94,其中髋关节翻修的完成率为43%,膝关节翻修的完成率为11%~48% 93,95。值得注意的是,选择偏倚可能影响了这些研究中报告的结局。在对澳大利亚和新西兰的髋关节或膝关节PJI患者进行2年随访的一项观察性研究中,对于早期、晚期急性和慢性PJI, DAIR成功率(定义为首次假体植入后临床治愈)分别为74%、49%和44% 79。与接受非感染性全髋关节置换术的患者相比,髋关节PJI患者的生活质量和关节功能较低,并且更有可能需要生活辅助(21% vs. 12%)和移动辅助设备(65% vs. 42%)96。

PJI对患者的生活产生了负面影响,包括身体、社会和情绪方面的影响,原因包括高再入院率、昂贵的重复操作、住院时间延长、门诊服务使用增加和抗生素用药时间延长。身体功能差、卧床不起、长期抗生素治疗、无法独立生活以及害怕疾病进展或死亡会导致心理社会痛苦、孤立、不安全感以及抑郁和焦虑,其水平与癌症患者相似92。由于需要较长时间才能确定治愈方法,因此可能会出现临床上显著的相关抑郁和焦虑,即使在成功治疗的病例中也是如此92。对于医疗团队而言,PJI可能导致负面情绪和认知功能障碍,从而导致职业倦怠,尤其是对于可能感到有责任的外科医师97。髋关节PJI后5年时的死亡率为21%(是基于年龄的死亡率的4倍)98,10年时的死亡率为45%(vs.非感染性全髋关节置换术患者的死亡率为29%)96。对于二期翻修,全髋关节置换术后的1年死亡率为13%,全膝关节置换术后的1年死亡率为9% 93。在一项纳入34例患者的研究中,同时性PJI与18%的30日死亡率相关;非计划再次手术的1年累积发生率为25% 99。

前景


在过去的20年里,我们对PJI本身作为一种疾病实体的理解取得了进展,尽管大多数数据是关于髋关节和膝关节PJI的。其他关节感染需要更多的数据。遗传易感性需要进一步研究。针对PJI的生物膜特性,需要在预防、诊断和治疗方面取得进展。蛋白质组学和基因组学诊断需要进一步评估100-102。考虑到手术场景的差异、多种微生物类型和新出现的抗生素耐药性,最好在卓越的专科中心进行个体化治疗。我们需要确定最佳的手术方法和药物治疗,包括特定抗生素、非抗生素疗法以及给药持续时间和途径。关于PJI预防和治疗的随机对照试验正在进行中。医疗保险的报销方式应获得足够好的临床结局。

作者信息Robin Patel, M.D.From the Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and the Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN. Dr. Patel can be contacted at [email protected] or at Mayo Clinic, 200 First St. SW, Rochester, MN 55905.参考文献

1. Tai DBG, Patel R, Abdel MP, Berbari EF, Tande AJ. Microbiology of hip and knee periprosthetic joint infections: a database study. Clin Microbiol Infect 2022;28:255-259.

2. Marigi EM, Bartels DW, Yoon JH, Sperling JW, Sanchez-Sotelo J. Antibiotic prophylaxis with cefazolin is associated with lower shoulder periprosthetic joint infection rates than non-cefazolin alternatives. J Bone Joint Surg Am 2022;104:872-880.

3. Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty 2008;23:984-991.

4. Premkumar A, Kolin DA, Farley KX, et al. Projected economic burden of periprosthetic joint infection of the hip and knee in the United States. J Arthroplasty 2021;36(5):1484-1489.e3.

5. Kim HS, Park JW, Moon SY, Lee YK, Ha YC, Koo KH. Current and future burden of periprosthetic joint infection from national claim database. J Korean Med Sci 2020;35(49):e410-e410.

6. Gundtoft PH, Pedersen AB, Schønheyder HC, Møller JK, Overgaard S. One-year incidence of prosthetic joint infection in total hip arthroplasty: a cohort study with linkage of the Danish Hip Arthroplasty Register and Danish Microbiology Databases. Osteoarthritis Cartilage 2017;25:685-693.

7. Triantafyllopoulos GK, Soranoglou VG, Memtsoudis SG, Sculco TP, Poultsides LA. Rate and risk factors for periprosthetic joint infection among 36,494 primary total hip arthroplasties. J Arthroplasty 2018;33:1166-1170.

8. Koh CK, Zeng I, Ravi S, Zhu M, Vince KG, Young SW. Periprosthetic joint infection is the main cause of failure for modern knee arthroplasty: an analysis of 11,134 knees. Clin Orthop Relat Res 2017;475:2194-2201.

9. McMaster Arthroplasty Collaborative (MAC). Incidence and predictors of prosthetic joint infection following primary total knee arthroplasty: a 15-year population-based cohort study. J Arthroplasty 2022;37(2):367-372.e1.

10. McMaster Arthroplasty Collaborative (MAC). Risk factors for periprosthetic joint infection following primary total hip arthroplasty: a 15-year, population-based cohort study. J Bone Joint Surg Am 2020;102:503-509.

11. Esposito CI. CORR Insights: periprosthetic joint infection is the main cause of failure for modern knee arthroplasty: an analysis of 11,134 knees. Clin Orthop Relat Res 2017;475:2202-2204.

12. Kapadia BH, Banerjee S, Cherian JJ, Bozic KJ, Mont MA. The economic impact of periprosthetic infections after total hip arthroplasty at a specialized tertiary-care center. J Arthroplasty 2016;31:1422-1426.

13. Kapadia BH, McElroy MJ, Issa K, Johnson AJ, Bozic KJ, Mont MA. The economic impact of periprosthetic infections following total knee arthroplasty at a specialized tertiary-care center. J Arthroplasty 2014;29:929-932.

14. Garfield K, Noble S, Lenguerrand E, et al. What are the inpatient and day case costs following primary total hip replacement of patients treated for prosthetic joint infection: a matched cohort study using linked data from the National Joint Registry and Hospital Episode Statistics. BMC Med 2020;18:335-335.

15. Parisi TJ, Konopka JF, Bedair HS. What is the long-term economic societal effect of periprosthetic infections after THA? A Markov analysis. Clin Orthop Relat Res 2017;475:1891-1900.

16. Sousa A, Carvalho A, Pereira C, et al. Economic impact of prosthetic joint infection — an evaluation within the Portuguese National Health System. J Bone Jt Infect 2018;3:197-202.

17. Yao JJ, Hevesi M, Visscher SL, et al. Direct inpatient medical costs of operative treatment of periprosthetic hip and knee infections are twofold higher than those of aseptic revisions. J Bone Joint Surg Am 2021;103:312-318.

18. American Academy of Orthopaedic Surgeons. Diagnosis and prevention of periprosthetic joint infections: evidence-based clinical practice guideline. March 11, 2019 (https://www./globalassets/quality-and-practice-resources/pji/diagnosisandpreventionofperiprostheticjointinfections-7-24-19.pdf).

19. Humphrey TJ, Tatara AM, Bedair HS, Alpaugh K, Melnic CM, Nelson SB. Rates and outcomes of periprosthetic joint infection in persons who inject drugs. J Arthroplasty 2023;38:152-157.

20. Alamanda VK, Springer BD. The prevention of infection: 12 modifiable risk factors. Bone Joint J 2019;101-B(1):Suppl A:3-9.

21. Bülow E, Hahn U, Andersen IT, Rolfson O, Pedersen AB, Hailer NP. Prediction of early periprosthetic joint infection after total hip arthroplasty. Clin Epidemiol 2022;14:239-253.

22. Avila A, Acuña AJ, Do MT, Samuel LT, Kamath AF. Intra-articular injection receipt within 3 months prior to primary total knee arthroplasty is associated with increased periprosthetic joint infection risk. Knee Surg Sports Traumatol Arthrosc 2022;30:4088-4097.

23. Avila A, Do MT, Acuña AJ, Samuel LT, Kamath AF. How do pre-operative intra-articular injections impact periprosthetic joint infection risk following primary total hip arthroplasty? A systematic review and meta-analysis. Arch Orthop Trauma Surg 2022 February 12 (Epub ahead of print).

24. Komnos GA, Manrique J, Goswami K, et al. Periprosthetic joint infection in patients who have multiple prostheses in place: what should be done with the silent prosthetic joints. J Bone Joint Surg Am 2020;102:1160-1168.

25. DeKeyser GJ, Anderson MB, Meeks HD, Pelt CE, Peters CL, Gililland JM. Socioeconomic status may not be a risk factor for periprosthetic joint infection. J Arthroplasty 2020;35:1900-1905.

26. Lieber AM, Kirchner GJ, Kerbel YE, Moretti VM, Vakil JJ, Brahmabhatt S. Socioeconomic status is associated with risk of above-knee amputation after periprosthetic joint infection of the knee. Clin Orthop Relat Res 2019;477:1531-1536.

27. Kirchner GJ, Lieber AM, Kim RY, Kerbel YE, Moretti VM, Nikkel LE. Socioeconomic status is associated with the risk of Girdlestone resection arthroplasty after periprosthetic infection of the hip. J Am Acad Orthop Surg 2021;29:439-445.

28. Wang Q, Goswami K, Shohat N, Aalirezaie A, Manrique J, Parvizi J. Longer operative time results in a higher rate of subsequent periprosthetic joint infection in patients undergoing primary joint arthroplasty. J Arthroplasty 2019;34:947-953.

29. Siddiqi A, Alamanda VK, Barrington JW, et al. Effects of hospital and surgeon volume on patient outcomes after total joint arthroplasty: reported from the American Joint Replacement Registry. J Am Acad Orthop Surg 2022;30(11):e811-e821.

30. Ribau AI, Collins JE, Chen AF, Sousa RJ. Is preoperative Staphylococcus aureus screening and decolonization effective at reducing surgical site infection in patients undergoing orthopedic surgery? A systematic review and meta-analysis with a special focus on elective total joint arthroplasty. J Arthroplasty 2021;36(2):752-766.e6.

31. Lin L, Ke Z-Y, Wang Y, Chen X-L, Zhong D, Cheng S. Efficacy of preoperative screening and decolonization for Staphylococcus aureus in total joint arthroplasty: a meta-analysis. Asian J Surg 2021;44:807-818.

32. Berríos-Torres SI, Umscheid CA, Bratzler DW, et al. Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg 2017;152:784-791.

33. Buchalter DB, Nduaguba A, Teo GM, Kugelman D, Aggarwal VK, Long WJ. Cefazolin remains the linchpin for preventing acute periprosthetic joint infection following primary total knee arthroplasty. Bone Jt Open 2022;3:35-41.

34. Ortiz D III, Teo GM, Lygrisse K, Aggarwal VK, Long WJ. Increased rate of early periprosthetic joint infection in total hip arthroplasty with the use of alternatives to cefazolin despite additional gram-negative coverage. Arthroplast Today 2022;14:183-188.

35. Wyles CC, Hevesi M, Osmon DR, et al. 2019 John Charnley Award: increased risk of prosthetic joint infection following primary total knee and hip arthroplasty with the use of alternative antibiotics to cefazolin: the value of allergy testing for antibiotic prophylaxis. Bone Joint J 2019;101-B(6):Suppl B:9-15.

36. Zastrow RK, Huang H-H, Galatz LM, Saunders-Hao P, Poeran J, Moucha CS. Characteristics of antibiotic prophylaxis and risk of surgical site infections in primary total hip and knee arthroplasty. J Arthroplasty 2020;35:2581-2589.

37. Wu VJ, Iloanya MC, Sanchez FL, et al. Is patient-reported penicillin allergy independently associated with increased risk of prosthetic joint infection after total joint arthroplasty of the hip, knee, and shoulder? Clin Orthop Relat Res 2020;478:2699-2709.

38. Shenoy ES, Macy E, Rowe T, Blumenthal KG. Evaluation and management of penicillin allergy: a review. JAMA 2019;321:188-199.

39. Global guidelines for the prevention of surgical site infection. Geneva: World Health Organization, 2018.

40. Christensen DD, Moschetti WE, Brown MG, et al. Perioperative antibiotic prophylaxis: single and 24-hour antibiotic dosages are equally effective at preventing periprosthetic joint infection in total joint arthroplasty. J Arthroplasty 2021;36(7):Suppl:S308-S313.

41. Kuo F-C, Tan TL, Wang J-W, Wang C-J, Ko J-Y, Lee MS. Use of antimicrobial-impregnated incise drapes to prevent periprosthetic joint infection in primary total joint arthroplasty: a retrospective analysis of 9774 cases. J Arthroplasty 2020;35:1686-1691.

42. Yazdi H, Klement MR, Hammad M, et al. Tranexamic acid is associated with reduced periprosthetic joint infection after primary total joint arthroplasty. J Arthroplasty 2020;35:840-844.

43. Hong GJ, Wilson LA, Liu J, Memtsoudis SG. Tranexamic acid administration is associated with a decreased odds of prosthetic joint infection following primary total hip and primary total knee arthroplasty: a national database analysis. J Arthroplasty 2021;36:1109-1113.

44. Kobayashi N, Kamono E, Maeda K, Misumi T, Yukizawa Y, Inaba Y. Effectiveness of diluted povidone-iodine lavage for preventing periprosthetic joint infection: an updated systematic review and meta-analysis. J Orthop Surg Res 2021;16:569-569.

45. Driesman A, Shen M, Feng JE, et al. Perioperative chlorhexidine gluconate wash during joint arthroplasty has equivalent periprosthetic joint infection rates in comparison to betadine wash. J Arthroplasty 2020;35:845-848.

46. Buchalter DB, Kirby DJ, Teo GM, Iorio R, Aggarwal VK, Long WJ. Topical vancomycin powder and dilute povidone-iodine lavage reduce the rate of early periprosthetic joint infection after primary total knee arthroplasty. J Arthroplasty 2021;36(1):286-290.e1.

47. Hanada M, Nishikino S, Hotta K, Furuhashi H, Hoshino H, Matsuyama Y. Intrawound vancomycin powder increases post-operative wound complications and does not decrease periprosthetic joint infection in primary total and unicompartmental knee arthroplasties. Knee Surg Sports Traumatol Arthrosc 2019;27:2322-2327.

48. Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2013;56(1):e1-e25.

49. Parvizi J, Zmistowski B, Berbari EF, et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res 2011;469:2992-2994.

50. Shohat N, Bauer T, Buttaro M, et al. Hip and knee section, what is the definition of a periprosthetic joint infection (PJI) of the knee and the hip? Can the same criteria be used for both joints?: proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019;34(2):Suppl:S325-S327.

51. Parvizi J, Tan TL, Goswami K, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty 2018;33(5):1309-1314.e2.

52. McNally M, Sousa R, Wouthuyzen-Bakker M, et al. The EBJIS definition of periprosthetic joint infection. Bone Joint J 2021;103-B:18-25.

53. Bémer P, Léger J, Milin S, et al. Histopathological diagnosis of prosthetic joint infection: does a threshold of 23 neutrophils do better than classification of the periprosthetic membrane in a prospective multicenter study? J Clin Microbiol 2018;56(9):e00536-18-e00536-18.

54. Klement MR, Siddiqi A, Rock JM, Chen AF, Bolognesi MP, Seyler TM. Positive blood cultures in periprosthetic joint infection decrease rate of treatment success. J Arthroplasty 2018;33(1):200-204.e1.

55. Rockov ZA, Clarke HD, Grys TE, Chang Y-HH, Schwartz AJ. Is there an optimal cutoff for aspiration fluid volume in the diagnosis of periprosthetic joint infection? J Arthroplasty 2020;35:2217-2222.

56. Peng X, Zhang H, Xin P, et al. Synovial calprotectin for the diagnosis of periprosthetic joint infection: a diagnostic meta-analysis. J Orthop Surg Res 2022;17:2-2.

57. Kleeman-Forsthuber LT, Johnson RM, Brady AC, Pollet AK, Dennis DA, Jennings JM. Alpha-defensin offers limited utility in routine workup of periprosthetic joint infection. J Arthroplasty 2021;36:1746-1752.

58. Ivy MI, Sharma K, Greenwood-Quaintance KE, et al. Synovial fluid α defensin has comparable accuracy to synovial fluid white blood cell count and polymorphonuclear percentage for periprosthetic joint infection diagnosis. Bone Joint J 2021;103-B:1119-1126.

59. Wouthuyzen-Bakker M, Tornero E, Claret G, et al. Withholding preoperative antibiotic prophylaxis in knee prosthesis revision: a retrospective analysis on culture results and risk of infection. J Arthroplasty 2017;32:2829-2833.

60. Sigmund IK, Holinka J, Lang S, et al. A comparative study of intraoperative frozen section and alpha defensin lateral flow test in the diagnosis of periprosthetic joint infection. Acta Orthop 2019;90:105-110.

61. Walker LC, Clement ND, Wilson I, Hashmi M, Samuel J, Deehan DJ. The importance of multi-site intra-operative tissue sampling in the diagnosis of hip and knee periprosthetic joint infection — results from a single centre study. J Bone Jt Infect 2020;5:151-159.

62. Boyle KK, Kapadia M, Chiu Y-F, et al. The James A. Rand Young Investigator's Award: are intraoperative cultures necessary if the aspiration culture is positive? A concordance study in periprosthetic joint infection. J Arthroplasty 2021;36(7):Suppl:S4-S10.

63. Peel TN, Dylla BL, Hughes JG, et al. Improved diagnosis of prosthetic joint infection by culturing periprosthetic tissue specimens in blood culture bottles. mBio 2016;7(1):e01776-15.

64. Peel TN, Spelman T, Dylla BL, et al. Optimal periprosthetic tissue specimen number for diagnosis of prosthetic joint infection. J Clin Microbiol 2016;55:234-243.

65. Tai DBG, Wengenack NL, Patel R, Berbari EF, Abdel MP, Tande AJ. Fungal and mycobacterial cultures should not be routinely obtained for diagnostic work-up of patients with suspected periprosthetic joint infections. Bone Joint J 2022;104-B:53-58.

66. Trampuz A, Piper KE, Jacobson MJ, et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 2007;357:654-663.

67. Rieber H, Frontzek A, Heinrich S, et al. Microbiological diagnosis of polymicrobial periprosthetic joint infection revealed superiority of investigated tissue samples compared to sonicate fluid generated from the implant surface. Int J Infect Dis 2021;106:302-307.

68. Marazzi MG, Randelli F, Brioschi M, et al. Presepsin: a potential biomarker of PJI? A comparative analysis with known and new infection biomarkers. Int J Immunopathol Pharmacol 2018;31:394632017749356-394632017749356.

69. Flurin L, Wolf M, Mutchler M, Daniels M, Wengenack N, Patel R. Targeted metagenomic sequencing-based approach applied to 2,146 tissue and body fluid samples in routine clinical practice. Clin Infect Dis 2022;75:1800-1808.

70. Hong HL, Flurin L, Thoendel MJ, et al. Targeted versus shotgun metagenomic sequencing-based detection of microorganisms in sonicate fluid for periprosthetic joint infection diagnosis. Clin Infect Dis 2022 August 9 (Epub ahead of print).

71. Thoendel MJ, Jeraldo PR, Greenwood-Quaintance KE, et al. Identification of prosthetic joint infection pathogens using a shotgun metagenomics approach. Clin Infect Dis 2018;67:1333-1338.

72. Huang Z, Li W, Lee G-C, et al. Metagenomic next-generation sequencing of synovial fluid demonstrates high accuracy in prosthetic joint infection diagnostics: mNGS for diagnosing PJI. Bone Joint Res 2020;9:440-449.

73. Cai Y, Fang X, Chen Y, et al. Metagenomic next generation sequencing improves diagnosis of prosthetic joint infection by detecting the presence of bacteria in periprosthetic tissues. Int J Infect Dis 2020;96:573-578.

74. Echeverria AP, Cohn IS, Danko DC, et al. Sequencing of circulating microbial cell-free DNA can identify pathogens in periprosthetic joint infections. J Bone Joint Surg Am 2021;103:1705-1712.

75. Kildow BJ, Ryan SP, Danilkowicz R, et al. Next-generation sequencing not superior to culture in periprosthetic joint infection diagnosis. Bone Joint J 2021;103-B:26-31.

76. Flurin L, Hemenway JJ, Fisher CR, et al. Clinical use of a 16S ribosomal RNA gene-based Sanger and/or next generation sequencing assay to test preoperative synovial fluid for periprosthetic joint infection diagnosis. mBio 2022;13(6):e01322-e01322.

77. Azad MA, Wolf MJ, Strasburg AP, et al. Comparison of the BioFire Joint Infection panel to 16S ribosomal RNA gene-based targeted metagenomic sequencing for testing synovial fluid from patients with knee arthroplasty failure. J Clin Microbiol 2022;60(12):e0112622-e0112622..

78. Bedair HS, Katakam A, Bedeir YH, Yeroushalmi D, Schwarzkopf R. A decision analysis of treatment strategies for acute periprosthetic joint infection: early irrigation and debridement versus delayed treatment based on organism. J Orthop 2020;22:246-250.

79. Davis JS, Metcalf S, Clark B, et al. Predictors of treatment success after periprosthetic joint infection: 24-month follow up from a multicenter prospective observational cohort study of 653 patients. Open Forum Infect Dis 2022;9:ofac048-ofac048.

80. Wouthuyzen-Bakker M, Sebillotte M, Huotari K, et al. Lower success rate of debridement and implant retention in late acute versus early acute periprosthetic joint infection caused by Staphylococcus spp. Results from a matched cohort study. Clin Orthop Relat Res 2020;478:1348-1355.

81. Craig A, King SW, van Duren BH, Veysi VT, Jain S, Palan J. Articular spacers in two-stage revision arthroplasty for prosthetic joint infection of the hip and the knee. EFORT Open Rev 2022;7:137-152.

82. Kunutsor SK, Whitehouse MR, Blom AW, et al. One- and two-stage surgical revision of peri-prosthetic joint infection of the hip: a pooled individual participant data analysis of 44 cohort studies. Eur J Epidemiol 2018;33:933-946.

83. Belay ES, Danilkowicz R, Bullock G, Wall K, Garrigues GE. Single-stage versus two-stage revision for shoulder periprosthetic joint infection: a systematic review and meta-analysis. J Shoulder Elbow Surg 2020;29:2476-2486.

84. Lazic I, Scheele C, Pohlig F, von Eisenhart-Rothe R, Suren C. Treatment options in PJI — is two-stage still gold standard? J Orthop 2021;23:180-184.

85. Zahar A, Klaber I, Gerken AM, et al. Ten-year results following one-stage septic hip exchange in the management of periprosthetic joint infection. J Arthroplasty 2019;34:1221-1226.

86. Abdelaziz H, Grüber H, Gehrke T, Salber J, Citak M. What are the factors associated with re-revision after one-stage revision for periprosthetic joint infection of the hip? A case-control study. Clin Orthop Relat Res 2019;477:2258-2263.

87. Bernard L, Arvieux C, Brunschweiler B, et al. Antibiotic therapy for 6 or 12 weeks for prosthetic joint infection. N Engl J Med 2021;384:1991-2001.

88. Winkler T, Stuhlert MGW, Lieb E, et al. Outcome of short versus long interval in two-stage exchange for periprosthetic joint infection: a prospective cohort study. Arch Orthop Trauma Surg 2019;139:295-303.

89. Chieffo G, Corsia S, Rougereau G, et al. Six-week antibiotic therapy after one-stage replacement arthroplasty for hip and knee periprosthetic joint infection. Med Mal Infect 2020;50:567-574.

90. Li H-K, Rombach I, Zambellas R, et al. Oral versus intravenous antibiotics for bone and joint infection. N Engl J Med 2019;380:425-436.

91. Shah NB, Hersh BL, Kreger A, et al. Benefits and adverse events associated with extended antibiotic use in total knee arthroplasty periprosthetic joint infection. Clin Infect Dis 2020;70:559-565.

92. Knebel C, Menzemer J, Pohlig F, et al. Peri-prosthetic joint infection of the knee causes high levels of psychosocial distress: a prospective cohort study. Surg Infect (Larchmt) 2020;21:877-883.

93. Kurtz SM, Higgs GB, Lau E, Iorio RR, Courtney PM, Parvizi J. Hospital costs for unsuccessful two-stage revisions for periprosthetic joint infection. J Arthroplasty 2022;37:205-212.

94. Barton CB, Wang DL, An Q, Brown TS, Callaghan JJ, Otero JE. Two-stage exchange arthroplasty for periprosthetic joint infection following total hip or knee arthroplasty is associated with high attrition rate and mortality. J Arthroplasty 2020;35:1384-1389.

95. Corona PS, Vicente M, Carrera L, Rodríguez-Pardo D, Corró S. Current actual success rate of the two-stage exchange arthroplasty strategy in chronic hip and knee periprosthetic joint infection. Bone Joint J 2020;102-B:1682-1688.

96. Wildeman P, Rolfson O, Söderquist B, Wretenberg P, Lindgren V. What are the long-term outcomes of mortality, quality of life, and hip function after prosthetic joint infection of the hip? A 10-year follow-up from Sweden. Clin Orthop Relat Res 2021;479:2203-2213.

97. Mallon C, Gooberman-Hill R, Blom A, Whitehouse M, Moore A. Surgeons are deeply affected when patients are diagnosed with prosthetic joint infection. PLoS One 2018;13(11):e0207260-e0207260.

98. Natsuhara KM, Shelton TJ, Meehan JP, Lum ZC. Mortality during total hip periprosthetic joint infection. J Arthroplasty 2019;34(7):Suppl:S337-S342.

99. Gausden EB, Pagnano MW, Perry KI, Suh GA, Berry DJ, Abdel MP. Synchronous periprosthetic joint infections: high mortality, reinfection, and reoperation. J Arthroplasty 2021;36:3556-3561.

100. Fisher CR, Salmons HI, Mandrekar J, Greenwood-Quaintance KE, Abdel MP, Patel R. A 92 protein inflammation panel performed on sonicate fluid differentiates periprosthetic joint infection from non-infectious causes of arthroplasty failure. Sci Rep 2022;12:16135-16135.

101. Masters TL, Bhagwate AV, Dehankar MK, et al. Human transcriptomic response to periprosthetic joint infection. Gene 2022;825:146400-146400.

102. Fisher CR, Krull JE, Bhagwate A, et al. Sonicate fluid cellularity predicted by transcriptomic deconvolution differentiates infectious from noninfectious arthroplasty failure. J Bone Joint Surg Am (in press).

最后编辑:
作者:y930712
这个作者貌似有点懒,什么都没有留下。